Content Analysis and Queries in a Sound and Music Database

Stephen Travis Pope, Pierre Roy, and Nicola Grio
CREATE Lab (Center for Research in Electronic Art Technology)
Department of Music, UCSB, Santa Barbara, California 93106 USA
{stp, pierre, nico}@create.ucsb.edu, http://www create.ucsb.edu/Paleo

Abstract

The Paleo database project at CREATE aims to develop and deploy a large-scale integrated sound and music
database that supports several kinds of content and analysis data and several domains of queries. The basic com-
ponents of the Paleo system are: (1) a scalable general-purpose object database system, (2) a comprehensive
suite of sound/music analysis (feature extraction) tools, (3) a distributed interface to the database, and (4) proto-

type end-user applications.

The Paleo system is based on a rich set of signal and event analysis programs for feature extraction from
sound and music data. The premise is that, in order to support several kinds of queries, we need to extract a
wide range of different kinds of features from the data as it is loaded into the database, and possibly to analyze
still more in response to queries. The results of these analyses will be very long “feature-vectors” (or multi-level
indices) that describe the contents of the database. To be useful for a wide range of applications, the Paleo sys-
tem must allow several different kinds of queries, i.e., it needs to manage large and changing feature vectors.

As data in the database is used, the feature vectors can be simplified. This might mean discarding spectral
analysis data for speech sounds, or metrical grouping trees for unmetered music. This is what sets Paleo apart
from most other media database projects—the use of complex and dynamic feature vectors and indices.

This paper introduces the Paleo system’s architecture, and then focusses on three issues: the signal and event
analysis routines, the use of constraints in analysis and queries, and the object storage layer and formats. Some

examples of Paleo usage are also given.

1. Introduction

Most prior work in sound or music databases has
addressed a single kind of data (e.g., MIDI scores or
sampled sound effects), and has pre-defined the types
of queries that are to be supported (e.g., queries on
fixed sound properties or musical features). Earlier
systems also tended to address the needs of music
librarians and musicologists, rather than COmposers
and performers. In the Paleo system under develop-
ment at CREATE since 1996, we have built a suite of
sound and music analysis tools that is integrated with
an object-oriented persistency mechanism and a rapid
application development environment,

The central architectural feature of Paleo is its use
of dynamic feature vectors and on-demand indexing,
whereby annotational information derived from data
analysis can be added to items in the database at any
time, and where users can develop new analysis or
querying techniques and then have them applied to
the database's contents on-the-fly within a query. For
data that is assumed to be musical sound, this might
mean performing envelope detection, spectral analy-
sis, linear prediction, physical model parameter esti-
mation, transient modeling, etc. For musical
performance data (e.g., MIDI), this might entail
extraction of expressive timing, phrase analysis, or
harmonic analysis.

Paleo content is assumed to be sampled sound,
musical scores, or captured musical performances.
Scores and performance formats can be simple (e.g.,

-124-

MIDI-derived) or may contain complex annotation
and embedded analysis. Paleo is specifically con-
structed to support multiple sets of captured musical
performances (for use in comparing performance
expression). This includes the derivation of basic tim-
ing and dynamics information from MIDI perfor-
mances (to be able to separate the performance from
the “dead-pan” score), and the analysis of timbral
information from recorded sounds.

For score analysis, we use a variety of methods,
including simple statistical models, rule-based analy-
sis, and constraint derivation. Sampled sound analy-
sis is undertaken using a suite of functions called
NOLib that are written in the MatLab language and
can be accessed from within the Paleo environment
over the net via socket-based MatLab servers. The
techniques available in NOLib include all standard
time-, frequency-, wavelet modulus-domain analysis
operations, as well as pitch detection, instrument
classification, and sound segmentation,

The two main applications for Paleo are its use in
an integrated tool-kit for composers, and in a per-
former's rehearsal workstation. The first set of appli-
cations will put the database at the core of a
composition development environment that includes
tools for thematic and sonic experimentation and
sketch data management. Over the course of 1999
Paleo will be integrated into an existing composer's
software framework called the “Interim DynaPiano.”
The second platform centers on manipulating
rehearsal performance data relative to a “reference”

ICMC Proceedings 1999

score (which may or may not be a “dead-pan” inter-
pretation). Users can play into the system, and then
compare their performance to another one of their
own or of their teacher's. Query preparation takes
place using pre-built tools such as the composer's
sketch browser, or by creating direct queries in a sim-
plified declarative query language.

The Paleo software framework is an extension of
Siren (Pope 1997b, 1998), a Smalltalk-based pro-
gramming tool kit for multimedia software that runs
in the Squeak (Squeak 1999) implementation of
Smalitaik The implementation of the Paleo database
persistency and access component is based on the
public-domain Minnestore object-oriented database
package (Carlson 1998), which allows flexible man-
agement of data and indices. The Squeak port of
Minnestore is called SMS (Squeak Minnestore).

Paleo applications can communicate with an SMS
database server over a network, and can pass sound
sample data or event streams to/from the database.
We currently use a simple socket-based protocol, but
plan to move to a CORBA-based distribution infra-
structure in the near future.

To stress-test Paleo's analysis and query tools
against a realistic-sized data set, the test contents
used at the start of 1999 included over 1000 scores of
keyboard music (Scarlattiy Bach, Bartok, the hymnal,
etc.), several hundred “world” rhythms, the SHARC
database of instrument tone analyses, 100 recorded
guitar performance techniques, flute performances,
and spoken poetry in five languages.

2. Paleo Architecture

In Paleo, as in Siren, music and sound data are
software objects in a uniform representation called
Smoke (Pope 1997a). Smoke can be used to repre-
sent and manipulate event-like data such as a MIDI
performance of common practise notation score, or
signal-like data such as a sampled sound, a DSP pro-
gram, or spectral data.

{n Paleo’s SMS data persistency layer, Smoke
objects are stored in object sets, which are akin to
database tables. Each object set stores one kind of
objects, and can have any number of stored or
derived indices. The collection of all defined indices
determines the feature vector of the object set. When
stored to disk, each object set has its own directory,
storage policy, and a group of index files. For perfor-
mance reasons, there are also cache policies per
object set, and methods exist for keeping active
object sets in a RAM disk.

Various services can be used by the SMS database
server, such as call-outs to tghe NOLib functions (see
below) or the use of extra Smalltalk processes for
data analysis. The SMS server really only provides
the persistency layer and cache policies for open

ICMC Proceedings 1999

object sets. The overall architecture is as sow\\hown
in Figure 1.

Paleo SMS
OODB Server

Figure 1: Paleo architecture showing the end-user
API (Smoke objects) and SMS persistency server.
The server uses a cache/RAM disk manager and
one or more analysis back-ends

3. Paleo Media and Queries

A flexible music/sound storage facility should
allow the user to manage several different kinds of
data, and to interoperate with them in queries. The
basic data types we use include:

« musical sound (single instrumental notes,

phrases, and entire polyphonic pieces);

« non-musical sound (voice and sound effects);

+ speech (single-voice utterances);

+ derived or synthetic spectra and spectral families;

+ musical scores (e.g., “dead-pan” or interpreted

MIDI data, or notated score information); and

+ expressive data (timing, amplitude, timbre) from

performance (*interpretation™)

This list is not meant to be exhaustive, and future
additions are expected. Several query domains are
implemented, such as:

* query by annotation keyword (bibliographical,

analytical, text, hyper-links);

+ query by sound similarity (many kinds of match);

* query by musical content or structure (phrases,

harmony, formal structure);

+ query by spoken phrase, language, prosody, and

expression (assumes some speech recognition);

» query by instrumental performance technique

(assumes capture of expressive data); and

+ query by expression (assumes keyword mapping

of expressive performance data).

For real-world example queries, we've worked
with the following scenarios:

(Sound)

+ Find an oboe note (a car crash, a reggae band).

+ Find a brighter oboe note.

« Find the word “moon” whispered in Mandarin by

a male voice in a dry recording.
(Spectrum)
« Find the spectrum of this note in a lower register.
» Match a given spectrum (against a set of families
or templates).
(Score)
« Find Scariatti Sonata K204.

-125-

« Find all Scarlatti sonatas in F Major.

+ Find all hymns that begin with an arppeggiated
chord in the tenor voice.

« Find all pieces that have plagal cadences.

* Find 7-based rhythms with the emphasis on 1, 4.

(Performance)

« Find a performance of this phrase with more

rubato (faster, slower, different instruments).

4. Content, Annotation, and Indexing

The design issues related to the extent to which the
index management and caching of the underlying
database is visible can be reduced to a number of
maxims:

» The user doesn't care what's content, what's anno-

tation, and what's indexing.

« In theory, if we have enough annotation and
indexing, we can throw the content away!

« For flexible applications, we need to be able to
generate and manage annotation and indexing on-
the-fly.

» For some object models, it is natural to merge
content and annotation (scores), and for others,
it's more natural to separate them (sound).

In building suites of analysis routines for Paleo,
we have realized that there are many different groups
of analyses that one might need, and that the optimal
set depends on the style or genre of the (musical)
data, the assumed use of the object set, and the
medium of the source data. Part of the experiment is
to build a broad range of object sets and applications
that use them, and to see how the feature vectors
evolve over time.

5. DSP Analysis with NOLib

NOLIib is a suite of data analysis and feature
extraction routines written by one of the authors
(Orio) in the MatLab programming language. These
functions can be called by analysis scripts (inter-
preted MatLab programs), which can themselves be
started by a network-based “analysis server.” We use
the public-domain “octave” (Octave 1999) imple-
mentation of MatLab running on SGI (IRIX) and
Apple (LinuxPPC) servers.
NOLib's main routines are introduced below. Note
that MatLab functions routinely return more than one
result, as implied by the syntax [a b ¢] = fen(x, y, 2).
Analysis
env {epos eneg]=env(x,np) — Envelope of a sig-
nal, sampled at a multiple of the period

findport [inpos endpos Itm]=findport(x,Fs) —
Find the pseudo-steady portion of a signal and
the logarithmic attack time

acorr ac=acorr(x) — Autocorrelation of a signal
rceps rc=rceps(x) — Real cepstrum of a signal
pitchceps [pit,mx]}=pitchceps(x,Fs) — Evaluates

the pitch with real cepstrum

- 126 -

" ansync_mfc

pitchcor [pit,m]=pitchcor(x,Fs) — Evaluates the
pitch with autocorrelation

peramdf [per thr]=peramdf(x,Fs,Fmin,Fmax) —
Find the fundamental period of a signal using
Average magnitude difference

pitamdf (pit thr y]=pitamdf(x,Fs,Fmin,Fmax) —
Average magnitude difference pitch detector

pitfol pit=pitfol(x,Fs,windan,hopsize) —
Basic pitch follower

pv [mod pha ifr hopsize]=pv(x,Fs,pitch,hop) —
Phase vocoder

lpc_f acoef=lpc_f(x,Fs,numcoef,windan,hopsize)
— Linear prediction coding

lpcdec s=lpcdec(x,Fs,numipc,pitch) — Signal
deconvolution using LPC analysis

mfcc [meanEnergy mfccMean]=mfcc(x, len-
Frame, hopsize,Ff) — Mel frequency cepstral
coefficients evaluation

psyan [rms cgs irrJ=psyan(x,Fs,pit) — Psychoa-
coustical analysis of the sound, frame by frame

[mfc indnote interv] = ansync_mfc
(x,Fs,numcoef,windan,hopsize,pitarray pitres) —
Pitch synchronous analysis, using mel-cepstrum,
of a performance

linceps_f Ifc=linceps_f(x,Fs,numcoef,win-
dan,hopsize) — Computes linear frequency ceps-
tral coefficients of a signal (Hamming window)

pca [proj eigvec weig]=pca(coeff) — Principal com-
ponent analysis

all3save [acoef Ifc mfc pos] = all3save (x, Fs,
numcoef, windan, hopsize, trs) — LPC + MFCC
+ LFCC with variable resolution

Example: Batch analysis of a set of guitar sounds

The example MatLab code below is a script that
reads a directory of sound files and derives several
relevant features. We used this script for 100
recorded guitar notes to build an object set for query
based on performance technique

Set the sampling rate & window dimension
Fs=48000;
windan=2048;

Path to the files
fpath="/home/nico/DEI",

Name of the group of files plus their extension
fnames={...list_of_file_names...};
extens=".aiff";

Number of files
{filnum,void]=size(fnames);

Number of coefficients
numcoef=20;

Initialization of the linceps table
lfc=zeros(20,filnum);

Loop for the analysis
for n=1:filnum,
Load the file
filenames=[fpath,deblank(fnames(n,:)).extens];

ICMC Proceedings 1999

{head x]=Idaift(filename);

Find portion of file after the attack
[inpos endpos]=findport(x,Fs);

Check size of “steady state"—0.1sec max
if(endpos-inpos>Fs*0.1)

endpos=inpos+Fs*0.1;
endif

Analyze a frame with Linear Cepstrum
tmp_lfc=linceps_{(x(inpos:endpos), Fs,
numcoef, windan, windan/2);
Compute the mean
Ifc(1:numcoef,n)=mean(tmp_lfc")";
endfor # End of file loop

Principal Component Analysis
[projection eigvec weig}=pca(lc);

Other NOL.ib scripts have been used for audio file
segmentation, speaker identification, flute perfor-
mance analysis, and sound effect feature extraction.

6. MIDI File Analysis with Constraints

Our purpose is to allow complex queries on vari-
ous kinds of musical data, including scores, in the
spirit of the Humdrum system (Huron 1994). A large
amount of digitalized music is available as MIDI
files, for instance on one of the MIDI archives on the
Internet. -

The MIDI format however, provides only low-
level musical information: it is rather a performance-
than an analysis-oriented representation of music.
Thus, we need to analyze MIDI files in order to com-
pute additional musical features, such as: pitch-
classes (by resolving enharmonic ambiguities), voice
leading, keys, and harmonies.

Preliminary Remarks

The different tasks of analysis — enharmonic,
melodic, tonal, and harmonic analysis — are not
independent. For instance, the enharmonic analysis
depends on tonal analysis, and conversely, the com-
putation of local keys is based on the frequency of
the different pitch-classes. Therefore, we need a glo-
bal strategy in which the different tasks are per-
formed simultaneously.

In our context, we often need a partial analysis
because many queries only involve a few specific
elements or incomplete information. Consider the fol-
lowing queries: “How many sonatas by Scarlatti end
with a perfect cadenza? " or “Are there more minor
than major chords in the preludes of Bach's WTC? "
In such cases, it is useless to perform a complete har-
monic analysis of the 555 sonatas by Scarlatti, or of
the 48 preludes of the WTC. This speaks for a
scheme allowing partial and incomplete analysis.

What to analyze also depends on various param-
eters, such as the epoch, the style, and the nature (i.e.

ICMC Proceedings 1999

form, instrumentation) of the music considered, e.g.
the anatomic limitations of human voice compared to
a keyboard instrument. Our analysis strategy should
be easily adaptable to various situations.

The previous remarks led us to considering an
approach based on constraint satisfaction, instead of
using specific algorithms for the different tasks on
analysis (Mouton 1994). First, as a declarative para-
digm, constraint satisfaction permits to build systems
that can be adapted to specific situations easily. For
instance, adapting the system to vocal or keyboard
music analysis is just a matter of using a different set
of constraints for the melodies. Besides, constraint
resolution can be partial and incomplete. More pre-
cisely, the query “How many sonatas by Scarlatti end
with a perfect cadence? " will only require the
computation of elements related to the last two
chords of each sonata. Finally, constraint resolution is
a global process, in which the different elements are
progressively computed, thus, interdependent tasks
are interlaced in the resolution.

Constraint Satisfaction

A constraint satisfaction problem or CSP (Mack-
worth 1977) consists of a set of variables (each one
associated with a set of possible values, its domain),
representing the unknown values of the problem, and
a set of constraints, expressing relationships between
thern. Solving a CSP consists in instantiating each
variable with a value in its domain so that the con-
straints are satisfied.

Our approach to analyzing a MIDI file consists
in the following steps. First, we quantify the MIDI
file in order to get rid of slight tempo fluctuations,
and we segment it into a series of positions. Then, we
define a CSP, whose variables represent the different
elements of analysis: notes (one for each MIDI note-
event), chords (at each position), keys (at each posi-
tion), and melodies, and whose constraints represent
the relationships holding between them. The set of
constraints depends on the style and the form of the
piece. Then we solve the CSP using standard CSP
resolution. We use the BackTalk (Roy 1998) con-
straint solver to state and solve the problem.

For instance, to find the name and octave index
for a given MIDI key, we can state a CSP with 3 vari-
ables — the pitch, the octave index and the MIDI key
— and a constraint stating that their values should be
consistent. E.g., MIDI key 48 corresponds to C2,
B#1, or Dbb2. [f the local key at this position is C
major, the pitch variable will be instantiated with C,
and the octave index with 2 (See Figure 2).

Here are some examples of constraints:

« Two consecutive notes in a melody don’t overlap

- Two consecutive notes in a melody make a per-
fect, minor of major interval

« Two consecutive notes in a melody are distant
from less than an octave

-127-

+ The range of a melody is limited (depending on
the instrumentation)

* Modulation are limited to neighbor tonalities

* A note should belong to the local tonality, or at
least be closed (e.g. no Cbb in C# major)

+ Alocal key is determined by the frequency of the
notes around its position

[C.D.EFGAB) (bbbn# 0.8

Constraint

@

0.1, ..., 1271

Figure 2: A CSP corresponding to the enharmonic
resolution problem (the domains of the variables
are in square brackets)

For each note event of the MIDI file, we define
the following variables in the CSP: MIDI key, pitch,
octave index, melody index, start-time, and duration.
Each position corresponds to two variables: a local
key, and a chord. The MIDI key, pitch, and the
octave index variables are linked together as
explained above. Melodic constraints link the differ-
ent variables corresponding to a note (pitch, octave
index, start-time and duration) as well as the melody
index variables. Two melody index variables have
the same value if the corresponding notes are in the
same voice. Each local key variable is linked to the
group of notes around its position by a constraint that
computes the key according to the frequency of the
different pitches. Each chord variable is linked to the
note variables at its position and to the correspond-
ing local key variable by a constraint computing the
chord name and structure.

Issues

The constraint-based approach raises several
issues concerning both efficiency and design. Per-
forming the analysis as a global process can be
expensive, because of its highly combinatorial nature.
There are several ways of speeding up the resolution.
First, some basic analysis can be performed before,
and independently from, the rest. We do a pre-
melodic analysis, which yields some partial melodies
that are obvious in the MIDI file (e.g. in a fugue, the
beginning of the first voice is easy to detect). We also
perform a tonal pre-analysis, which give us informa-
tion about the tonal structure of the piece, e.g. the
overall tonality. This pre-analysis reduces the num-
ber of constraints and the size of the domains in the
resulting CSP, which is critical for the efficiency of
the resolution. The second improvement, which is
standard in constraint satisfaction, is to use selection

- 128 -

heuristics, which allows a fine control of the rasolu-
tion, for instance by first focussing on easiest parts of
the problem.

One difficulty is that all the aspects of analysis
cannot be fairly represented as constraints. In case of
ambiguities, when several solutions are valid, one of
them is generally preferred to the others, because it's
more likely to occur. Representing such preferences
as constraints would lead to an unnecessary over-con-
strained problem. To address this issue, we plan to
use a soft-constraints paradigm, see semiring-based
CSP (Bistarelli 1995).

Another issue that has both design and efficiency
impact is that some constraints are mere Boolean
properties, which perfectly fit in the constraint satis-
faction scheme, while others are more complex to
handle. For instance, the last example above: 4 local
key is determined by the frequency of the notes
around its position, requires some substantial compu-
tations. Modern constraint satisfaction solvers permit
to represent computation processes as constraints,
which are efficiently handled during the resolution
(Roy 1998, 1999).

7. Paleo Database Usage

To set up Paleo, we create a database given a stor-
age directory, then create one_ or more object sets in it
(these correspond to classes or tables), and lastly
define indices for the object sets (corresponding to
instance variables and accessors). One can then add
object to an object set, or retrieve objects based on
queries.

Create a new database of scores

The first example establishes a new database and
adds an object set to it. The object we add to this set
are assumed to respond to the messages composer
and style. The examples that follow are in Smalltalk;
comments are enclosed in double-quotes.

ldirdb!

dir := ‘Nomad:Paleo'. “base directory”

db := SMSDOB newOn: dir. “DB object”

(db addObjectSetNamed: #Scores)
objectsPerFile: 1; “Add an obj-set”
storesClass: EventList; “Stores event lists”

“Add 2 indices”
indexOn: #composer domain: String;
indexOn: #style domain: Symbol.

“Save the object set”
“Store objects”
db storeAll: (...collection_of_scores...)

db save,

Make a simple query

To make a simple database query, we re-open the
database, and create a gerOne: message with one or
more where: clauses, e. g., to get a score by name.

ICMC Proceedings 1999

idbl

db := MinneStoreDB openOn: 'Nomad:Paleo'.

(db getOne: #Scores) “Create a query on name”
where: #name eq: #Scarlattik004;
execute “Get the first response”

Add a new index to an existing database

To add a new index to an existing object set, we
use the indexOn: message, giving it the name of a
“getter” method (i.e., the method that answers the
property of the index), or simply provide a block of
Smalltalk code to execute to derive the index value.
In the second part of the next example, we create an
index of the pitches of the first notes in the score
database using a block (the text between the square
brackets) that gets the first pitches. This getter block
could involve more complex code and/or calls to
NOLIib functions.

“Add a new index with getter method”
(db objectSetNamed: #Scores)
indexOn: #name domain: Symbol.

“Add an index with getter block®
(db objectSetNamed: #Scores)
indexQn: #firstPitch
domain: Smallinteger
getter: { :el | el events first event
pitch asMIDI value].
db save. -

Make a more sophisticated query

To retrieve objects from the database, we use
getOne: or getAll: as above, and can, for example,
ask for a range or the derived first-pitch feature.

(db getAll: #Scores)
where: #firstPitch between: 62 and: 65;
execute

8. Compact and Efficient Storage Formats

Paleo supports compact and efficient data /O in
the form of methods that work with the Squeak
Smalitalk ReferenceStream framework, a customiz-
able binary object streaming format. The trade-offs in
the design of object storage formats are between size,
complexity, and flexibility (pick any two). In Paleo,
we opted for a system that is compact but also sup-
ports the full flexibility of the Smoke music represen-
tation, including abstract models for pitch, time, and
dynamics, multiple levels of properties and annota-
tion, the attachment of functions of time to events,
and hyper-links between events or event lists.

Below is a hexadecimal dump of a simple event
list (score) that demonstrates mixed-type properties,
i.e., the pitches are mixed among MIDI key num-
bers, note names, and Hertz values. The format
shown here is the “debugging format” and has some

ICMC Proceedings 1999

extra key bytes and explicit class names rather than
more compact symbol table keys.

Hex data bytes Description
0900000006 Object header
key 09 = normal object
32-bit inst size 6 = 4 instVars
+ 1 property + 1 offset
06094576 656E 74 4C 6973 74
Object type: class name,
key 06 = String, size = 09,
value = 'Eventlist'
80 58 04 00 00 08 6E

Event list header, properties
{dur) key 80 = music magnitude,
key 58 = MSecondDuration,

key 04 = smallint,

32-bit int value = 08 6E msec

010101 nil pitch, ampl, voice
0604 6E 616D 85 property key = ‘name’
06 0374 65 36 property value = 'te6'
000000 0D # of events (13)
End of header, note data follows
CO0 80 58 04 00 00 00 00
Note event header, CO = event key,
start time, 80 = music mag. key
58 = msec dur key, 04 = smallint,
32-bitval=0
00 00 00 05 obj size = 4 instVars + 0 props + 1

06 QA 4D 7573 69 63 45 76 65 6E 74
class name, key 06 = String,
size = 0A, = 'MusicEvent'
80 58 04 00 00 00 A6
duration, key 58 = MSec dur,
key 04 = smallint,
32-bit int value A8 = 166 msec
805C 110263 32
pitch, key 5¢ = SymbolicPitch,
key 11 = string,
length = 2, string = '¢2'
80 47 04 00 00 00 48
loudness, key 47 = MIDIVelocity
01 voice = nil, End of event

CO0 80 58 04 00 00 00 A6
Event header, (start time) music
magnitude, msec dur
00 00 00 05 obj size = 4 iVars + O props + 1
0A 00000035 reference to class name
80480E3FC53F 7C
duration, key 48 = SecondDuration,
key OE = float
805C 1103632332
pitch, key 5¢ = SymbolicPitch,
key 11 = string...
80 54 0OE C0 13 B7 BB
loudness, key 47 = DBLoudness,
key OE = float
01 voice = nil, End of event

—more events follow

-129-

Data files in this format is on the order of 10-40
times larger than the “corresponding” MIDI files, but
because this notation supports the full Smoke annota-
tion, we can store much richer data. Paleo extensions
include simple derived properties such as symbolic
pitch (with enharmonic disambiguation) and time
(with tempo and meter derivation, rest insertion, and
metrical grouping), and higher-level properties such
as harmonic analysis, performance expression, and
others.

9. Issues and Questions

The sections above have brought to light several
design dimensions in Paleo; these are each the sub-
jects of on-going evaluation and redesign.

There are unsolved problems in the basic object
modelling area, such as how to model and manipu-
late derived performance expression—as tempo and
dynamic maps; as the weights of rule sets; as con-
straint filters, etc.

As mentioned above, we are experimenting with
the association of analysis suites with families of
object sets so that we can classify new data accord-
ing to its style and usage to determine what first-
round analysis to undertake.

Other questions relate to the incorporation of new
analysis methods (e.g., based on the mapping of per-
formance rules onto real performances) and the use
of these in queries.

10. Conclusion

While we do have many interesting intermediate
results, Paleo is still very much a work in progress.

The planned extensions will make the system even
more unique and powerful for a wide range of sound
and music applications.

Squeak, Siren, SMS, NOLIb, and Paleo are all
available from the CREATE web/ftp site. See http://
www create.ucsb.edu/Palec for details. Most of the
software runs on Macintosh, MSWindows, and
UNIX platforms and is available with source code in
C, MatLab, or Smalltalk.

References

Bistarelli, S., U. Montanari, and F. Rossi. 1995
“Constraint Solving over Semirings,” in Proceedings
of [ICAI’9S

Carlson, J. 1998. MinneStore OO Database Docu-
mentation. See http://www.objectcomposition.com.

Huron, D. 1994, “The Humdrum Toolkit Refer-
ence Manual,” Center for Computer Assisted
Research in the Humanities, Menlo Park, California.

Mackworth, A. 1977. “Consistency in Networks of

Relations,” Artificial intelligence, 8 (1), pp. 99-1138.

-130-

Mouton, R. 1994. “Outils intelligents pour les
musicologues,” Ph.D. Thesis, Université du Maine,
Le Mans, France. -

Octave Programming Language. See http://
www.che.wisc.eduw/octave/

Pope, S. T. 1997a. “Musical Object Representa-
tion.” in Roads, C, S. Pope, A. Piccialli, and G. De
Poli, eds. Musical Signal Processing. Lisse, the
Netherlands: Swets & Zeitlinger, 1997. pp. 317-348.

Pope, S. T. 1997b. “Siren: Software for Music
composition and Performance in Squeak.” Proceed-
ings of the 1997 International Computer Music Con-
ference. San Francisco, International Computer
Music Association. pp. 208-210.

Pope, S. T. 1998. “The Siren Music/Sound Plat-
form.” Proceedings of the 1998 ACM Conference on
Object Oriented Programming Systems, Languages,
and Applications (OOPSLA).

Roy, P., A. Liret, and F. Pachet. 1998. “The
Framework Approach for Constraint Satisfaction,”
ACM Computing Survey Symposium, 1998

Roy, P., A. Liret, and F. Pachet. 1999. “Constraint
Satisfaction Frameworks,” in “Object-Oriented App-
plication Frameworks,” Wiley Ed., chapter 17, to
appear

Squeak, 1999. Squeak Smalltalk documentation.
See http://www.squeak.org.

ICMC Proceedings 1999

